Defines | |
| #define | MON_MUL(x, y, z) ((x) = (y) + (z)) |
| #define | MON_DIV(x, y, z) ((x) = (y) - (z)) |
Functions | |
| int32_t | mon_divides (monomial_t x, monomial_t y) |
| #define MON_DIV | ( | x, | |||
| y, | |||||
| z | ) | ((x) = (y) - (z)) |
Sets x to the quotient of y and z, assuming that z divides y.
| #define MON_MUL | ( | x, | |||
| y, | |||||
| z | ) | ((x) = (y) + (z)) |
Sets x to the product of y and z.
| int32_t mon_divides | ( | monomial_t | x, | |
| monomial_t | y | |||
| ) |
Returns whether the monomial x divides the monomial y.
The return value will be either 1 or 0, depending on whether or not x divides y.
1.5.6